Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Biol. Res ; 51: 49, 2018. tab, graf
Article in English | LILACS | ID: biblio-1011393

ABSTRACT

BACKGROUND: Antarctic bryophytes (mosses and liverworts) are resilient to physiologically extreme environmental conditions including elevated levels of ultraviolet (UV) radiation due to depletion of stratospheric ozone. Many Antarctic bryophytes synthesise UV-B-absorbing compounds (UVAC) that are localised in their cells and cell walls, a location that is rarely investigated for UVAC in plants. This study compares the concentrations and localisation of intracellular and cell wall UVAC in Antarctic Ceratodon purpureus, Bryum pseudotriquetrum and Schistidium antarctici from the Windmill Islands, East Antarctica. RESULTS: Multiple stresses, including desiccation and naturally high UV and visible light, seemed to enhance the incorporation of total UVAC including red pigments in the cell walls of all three Antarctic species analysed. The red growth form of C. purpureus had significantly higher levels of cell wall bound and lower intracellular UVAC concentrations than its nearby green form. Microscopic and spectroscopic analyses showed that the red colouration in this species was associated with the cell wall and that these red cell walls contained less pectin and phenolic esters than the green form. All three moss species showed a natural increase in cell wall UVAC content during the growing season and a decline in these compounds in new tissue grown under less stressful conditions in the laboratory. CONCLUSIONS: UVAC and red pigments are tightly bound to the cell wall and likely have a long-term protective role in Antarctic bryophytes. Although the identity of these red pigments remains unknown, our study demonstrates the importance of investigating cell wall UVAC in plants and contributes to our current understanding of UV-protective strategies employed by particular Antarctic bryophytes. Studies such as these provide clues to how these plants survive in such extreme habitats and are helpful in predicting future survival of the species studied.


Subject(s)
Pigments, Biological/radiation effects , Pigments, Biological/metabolism , Ultraviolet Rays , Cell Wall/radiation effects , Cell Wall/metabolism , Bryophyta/radiation effects , Bryophyta/metabolism , Seasons , Time Factors , Pigmentation/radiation effects , Analysis of Variance , Chromatography, High Pressure Liquid , Spectroscopy, Fourier Transform Infrared/methods , Plant Leaves/radiation effects , Plant Leaves/metabolism , Microscopy, Confocal , Bryophyta/cytology , Antarctic Regions
2.
J Environ Biol ; 2007 Apr; 28(2 Suppl): 493-502
Article in English | IMSEAR | ID: sea-113867

ABSTRACT

The Blackstone River, a 74 km interstate stream located in South Central Massachusetts and Rhode Island (USA), has had a long history of problems due to high concentrations of metals such as copper and lead. The river has been subjected to metals load that include contributions from urban runoff, wastewater discharges, contaminated sediments, and also resuspension of contaminated sediments in the river-bed. All of these effects lead to elevated concentrations of metals such as lead, copper, zinc, chromium, cadmium and arsenic. Furthermore, the contaminated sediments located behind impoundments become especially important when higher flows cause resuspension of the previously deposited sediments and associated metals. While it is known that high metals concentrations in this river are found in the bottom sediments, the fate of the metals and impact on the ecosystem are not well known. This paper addresses the potential impacts that metals may have on vegetation and plant tissues in the vicinity of the river Plant tissues (primarily mosses), were collected from a number of sampling sites along a 14 km stretch of this river. At each site, samples were collected from multiple distances from the riverbank. Laboratory analyses made use of both wet digestion and dry ashing digestion methods, followed by analysis using an atomic absorption spectrophotometer. The wet and dry ashing digestion methods yielded similar results, although the results afforded by the dry ashing methods were slightly lower than the results obtained from the wet method. The results showed that the metals concentrations in vegetation (as determined from plant tissue analyses) were generally inversely related to the distance between the vegetation and the riverbank, with higher metals concentrations existing in plant tissues located close to the riverbank. In addition, it was found that the transport of metals concentrations to the terrestrial vegetation adjacent to this section of the Blackstone River was affected by the river morphology and flow characteristics (including velocity, flow rate and depth of flow, which can govern the potential for plant submergence, as well as the dynamics of flow and transport in the soil near the river). The analyses help to provide an improved understanding of metals transport and potential significance of metals contamination in a terrestrial ecosystem that is located adjacent to a river.


Subject(s)
Bryophyta/metabolism , Ecosystem , Environmental Monitoring , Geologic Sediments/analysis , Massachusetts , Metals, Heavy/analysis , Rivers/chemistry , Water Movements , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL